Обычно синтез тугоплавких карбидов переходных металлов требует использования специфических методов спекания, изостатического прессования и других технологий, с необходимостью поддержания глубокого вакуума. Они являются дорогостоящими и ресурсоемкими.
Исследователи Сколтеха, ТПУ и Университета Пирогова применили недорогой и эффективный плазмодинамический метод синтеза высококачественных тройных соединений гафния-тантала-углерода как в виде порошков, так и в виде покрытий, которые можно легко наносить на различные подложки.
Технология основана на генерации ускоренных импульсных потоков плазмы. Аналогичные технологии с середины 1960-х годов использовались в области аэрокосмических систем. Генерируемые гиперзвуковые потоки потенциально рассматривались в качестве источника электромагнитного движения в плазменных пушках и плазменных двигателях. Для решения практической задачи были предложены различные конструкции плазменных ускорителей. К концу XX века сфера их применения расширилась, затронув синтез функциональных материалов.
Одну из таких технологий — плазмодинамический метод синтеза — ученые адаптировали для получения карбида гафния-тантала.
«Сначала мы накачивали много энергии в емкостной накопитель энергии и использовали разработанную в ТПУ уникальную научную установку — коаксиальный магнитоплазменный ускоритель, в который помещали исходные материалы: порошкообразные углерод, оксиды гафния и тантала. Когда конденсаторы разряжаются, это приводит к возникновению электрической дуги, которая мгновенно превращает исходные материалы в поток плазмы со скоростью пять километров в секунду. Все, что остается сделать, — это собрать конечный материал в виде порошка со стенок камеры-реактора», — комментирует соавтор исследования, научный сотрудник ТПУ Дмитрий Никитин.
Команда предсказала десять фаз карбидов гафния и тантала, которые отличаются относительным соотношением двух металлов в полученном материале, и синтезировала их все с использованием уникальной экспериментальной установки.«Мы использовали современные вычислительные методы вместе с экспериментальными методами, необычными для таких типов соединений, чтобы построить уникальную исследовательскую линию, позволяющую точно прогнозировать новые соединения с желаемыми свойствами с последующим селективным и недорогим синтезом новых соединений и функциональных материалов на их основе»,
«Это показывает, что, в отличие от других методов, наш позволяет контролировать состав продукта с высокой селективностью и точностью», — добавляет Александр Квашнин.
Другие методы — это прессование порошка при давлении, в 10 000 раз превышающем нормальное атмосферное давление, и высоких температурах, а также спекание в искровой плазме в условиях высокого вакуума. Необходимые для получения карбидов гафния-тантала экстремальные условия довольно труднодостижимы, и, кроме того, оба метода требуют измельчения исходных материалов в очень мелкие порошки для обеспечения однородности продукта.
Помимо того, что предложенный командой исследователей метод плазмодинамического синтеза менее требователен к исходным материалам и условиям реактора, он также является методом нанесения покрытий из карбида гафния-тантала на произвольные поверхности.
«Часть из десяти соединений, предсказанных и синтезированных в этом исследовании, мы также нанесли в виде покрытия на образец меди», — добавляет Александр Квашнин.
По мнению исследователей, такие твердосплавные покрытия можно было бы использовать для тепловой и электрической изоляции, а также для защиты от механических повреждений.
«Если мы представим, что этот кусок меди был кабелем, то, покрыв его карбидом гафния-тантала, мы сделали этот кабель примерно в десять раз прочнее, а также обеспечили его электрическую изоляцию и теплозащиту. Другие компоненты, которые функционируют в суровых условиях, также могут выиграть от таких покрытий. Скажем, если наносить их на шарики в шарикоподшипнике, то значительно повысится его износостойкость», — говорит Александр Квашнин.
«Это исследование очень важны еще и потому, что предсказанные и синтезированные нанопорошки карбида металла, возможно, могут быть использованы в каталитических системах для расщепления воды и получения водорода. Сотрудничество Центра экоэнергетики ТПУ и Проектного центра по энергопереходу Сколтеха может создать впечатляющие новые материалы для современной энергетики»,